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VJ Bbstract guarantee nominal closed-loop stabil ity, 
stability-robustness w i t h  respect t o  the unstructured rdm 
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2 $ uncertalnty. and llomlnal perlormance. tne issue 01 
3 compensator for a linear. time-invariant. SISO DIant robust performance is ignored. 

A method IS developed to  design a fixed-parameter 

model characterized by significant structured, as we1 I 
Q as unstructured, uncertainty. The controller minimizes 

the Hw norm of the worst-case sensitivity function 
over the operating band and the resulting feedback 

, system exhibits robust stabil ity anp robust 
performance. It i s  conjectured that such a robust 
nonadaptive control design technique can be used 
on-line in an adaptive control system. 

\o 

1. Introduction 

The mathematical description of  a physical plant 
(i.e. the nominal model) is always characterized by 
uncertainty, or modeling error. The plant/model 
mismatch caused by neglecting high-frequency 
phenomena (i.e. unmodeled dynamics) is known as 

~ unstructured uncertainty because only a frequency 
dependent magnitude bound on the error is available. 
Differences between the actual values and the nominal 
values of the parameters in the finite-dimensional, 
low-frequency model are the source of structured 
uncertainty. The goal of the robust design method 
presented here i s  t o  maintain closed-loop stability a 
performance in the presence of both types of 
uncertainty. 

The most popular modern design methodologies 
(LQWLTR, Hm) only deal w i th  plant models which 
contain unstructured uncertainty [ 1.21. The effect of 
plant parameter variations may be incorporated into the 
unstructured uncertainty; however, the directional 
(phase) information associated w i th  the structured 
uncertainty i s  lost and the result is an overly 
conservative design. Alihoijgh these methodolqies 
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Techniques which deal directly -w i th  structured 
uncertainty have been developed. Horowitz [3-51 has 
proposed the so-called Horowitz templates which 
reprosent, at a particular frequency. the gain and phase 
changes associated w i t h  parameter variations as a 
region on a Nichols chart. A loop transfer function is 
derived from the templates which ensures closed-loop 
stabi l i ty  and a certain amount of performance over the 
possible range of parameters. This procedure is 
extremely tedious for more than a few frequency points 
and a great deal of judgment is required on the part 'of  
the designer. 

Sideris and Safonov I61 approach the problem of 
structured uncertainty by examining a plant template in 
the complex plane. A series of transformations at each 
frequency is performed which maps the .irregularly 
shaped region in the complex plane onto the uni t  disk. 
The directional properties of  the uncertainty are 
eliminated and the transformed problem is egsentially a 
design w i t h  unstructured uncertainty. Nevanlima-Pick 
interpolation is used t o  find the compensator w h i m  is 
then transformed back in such a way that it is a 
solution to  the original problem. This approach may be 
promising, however it appears that a great deal of 
computation is required at  each frequency point. 

The problem of robust stabil ization in the presence 
of parameter uncertainty is addressed by Khargonekar 
and Tannenbaum (71. The authors do not deal w i t h  
performance issues directly and simultaneous 
variations in the poles and zeros cannot be considered 
wi th in  the present framework. Doyle [8-101 has 
developed a new mathematical quantity p, the 
structured singular value. t o  handle structured 
uncertainty and the problems of robust stabi l i ty  and 
robust performance. While it may be a valuable 
analysis tool 11 1,121, a feedback synthesis methodology 
based on p is not yet available. 

!t is the purpose of this paper t o  develop techniques 
for analyzing the stabi l i ty  and performance of a SISO 
feedback system which contains a plant model w i t h  
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parameter uncertainty and unmodeled dynamics. Based 
rn !he an.a!ysis, a rmijst c m t r o l  design method which 
uses concepts from LQG/LTR and Hm 3eory is outlined. 
The compensator guarantees nominal closed-loop 
stabi l i ty  and stability-robustness w i th  respect t o  
structured and unstructured uncertainty. In addition, 
the Hw norm of the worst-case sensitivity function 
over the operating band is minimized. Since this norm 
provides an upper bound on a l l  possible sensitivity 
functions, the closed-loop system satisfies the 
condition of robust performance. 

; 

2. Problem- 

Consider the feedback system in Figure 1 w i th  plant 
model g(s) and compensator k(s). The phgsical plant t o  
be controlled is single-input, single-output, linear, and 
time-invariant. The transfer function gt(s). which may 
be of inf in i te order, fu l ly  describes the true plant. The 
low-frequency behavior of gt(s) is  captured in a 

parameterized nth order transfer function g(s& where 
Q represents the parameter vector. The actual value of 
Q is  a*. Unstructured uncertainty results from the 
fact  that the nth order transfer function g(s,Q*) cannot 
complete 1 y describe the (possibly ) i nf ini te-d i mens i ona I 
plant gt(s). Using the multiplicative form of the 
modeling error as in [ l ] ,  the frequency-domain 
descriptior? of the unstructured uncertainty i s  
represented by the stable transfer function [l+A(s)l. 
The true plant ail be described as follows. 

It is assumed that a frequency-dependent magnitude 
bound on the unstructured uncertainty is available, but 
the phase of A(jw) is  completely unknown. 

I A( jw) I I A&) (2) 

In any practical situation Q* is unknown; however, 
the true parameter values are bounded by the known set 
e (;.e. Q* t e).  or design purposes a nominal 
parameter vector Q i s  chosen from the Set  8.  
Structured uncertainty, which arises when 6 and Q* are 
not Identical, can be described in tne frequency-domain 
using the multiplicative model error representation as 
in Equation ( 1  1. 

g(s,Q*) = g(S& 1 + &(s,Q*,& 1 (3 ) 

From (!) and (31, the true plant gt(s) can be represented 
in terms of the IW-freqUency model, the parametric 
uncertainty, and the unmcdeled dynamics. 

In order to  design the compensator k(s) and to  
analyze the feedback system containing the true plant, 
information about the nominal model g(s,&, the 
structured uncertainty &(SA*,&, and the umnodeled 
dynamics A b >  is  required. The nominal model and the 
magnitude bound on the unstructured uncertainty Ao(o) 

are known a priori. The exact value of &(s,Q*,& is  
unknown, but the set containing a l l  possible values may 
be constructed from 8. Using Equation (3) and 
replacing Q* w i t h  6(s,&& may be computed for a 
given 4. 

The above equation defines the set of structured 
uncertainty Us. 

Us and the set of transfer functions A(s) satisfying 
Equation (2) lead to  the definit ion of the set of possible 
plant transfer functions G(s) which contains the true 
plant g t(sl. 

The design method in section 4 w i l l  f ind a 
compensator k(s) such that the closed-loop system is 
stable for a l l  g(s) 6 G(s). In addition t o  robust 
stabilization. the compensator must achieve closed-loop 
performance and performance-robustness. The 
sensitivity transfer function s(s) = ( 1  +g(s)k(s)I-' 
evaluated along the jw-axis governs the 
command-following and disturbance-rejection 
performance of the feedback system in Figure 1 .  The 
performance objective of the design method i s  t o  
minimize the Hm norm of the worst-case sensitivity 
function over the frequency range where the commands 
and disturbances have energy (i.e. the operating band 
Q0), subject t o  closed-loop stabil ity. By definition, the 
magnitude of the worst-case sensitivity function i s  an 
upper bound on the magnitude of the sensitivity 
function for a l l  g(s) f G(s) and for a l l  w. Thus :he 
feedback sgstem satisfies the condition of robust 
performance w i t h  respect t o  the worst-case 
sensitivity. 
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3. kaal@E 

This section covers the stabil ity and performance 
analysis of the feedback System in Figure I .  The 
compensator k(s) has been designed based on a plant 
g(s) € G(s). The loop transfer function t(s)=g(s)k(s) and 
the sensitivity s(s) are the functions of interest. Let 
t(s,& = g(s&k(s) be the nominal loop transler function. 
Then, 

3.1 

A t  the very least, the compensator k(s) ensures the 
stabi l i ty  of the nominal closed-loop system. From the 
Nyquist cr i ter ion the number of encirclements of the 
cr i t ica l  point in the Nyquist diagram of t(jw,& is 
known. A t  this point it must be assumed that g(s,Q) 
has the same number of unstable poles for all Q c 8. 
Since the structured uncertainty does not change the 
number of unstable poles and A(s) is stable, the Nyquist 
cr i ter ion requires the number of encirclements of the 
cr i t ica l  point t o  remain unchanged for the loop transfer 
function t(jo). 

A stability-robustness condition may be derived by 
examining the loop transfer function t(jw) in the 
complex plane at a particular frequency w (Figure 2). 
From Equation (8b), there are two perturbation terms 
added t o  t(jw,& which may alter the stabil ity of the 
nominal loop (i.e. change the number of encirclements 
of the c r i t i ca l  point). The perturbation caused by the 
structured uncertainty is t(jo,&S(jo&& and the 
second term, t(jw,&[l +S(jo.a&lA(jo), i s  a result of 
the combined effect of structured and unstructured 
uncertainty. This perturbation is represented as a 
Circle in the complex plane because the phase of A(jw) 
is unknown. 

Before a stability-robustness test can be derived, it 
must be assumed that the structured uncertainty does 
not alter the stabil ity of the nominal loop (i.e. the 
perturbation t(jw,&S(jw,&& does not change the 
number of cr i t ica l  point encirclements of the nominal 
loop t(ju,& ). Note that this is a very restrictive 
assumption; however, it is only used to derive a 
stabiiity-robustness condition for design purposes and 
it does not l im i t  the classes of uncertainty which may 
be considered. under th is assumption the loop transfer 
function t ( jw) w i l l  be closed-loop stable i f  the 
distance t o  the cr i t ica l  point ( i.e. i t+ t ( jw ) /  ) i s  
greater than zero over a l l  frequencies. I f  this is the 
case it is impossible for the perturbations due to 
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uncertainty to  change the number of cr i t ica l  point 
encirciements. From Figure 2, the distance io  the 
cr i t ica l  point d, of the loop t ( j o )  may be computed. 
The closed-loop system may be unstable if the cr i t ica l  
point i s  located in the interior of the circular region in 
Figure 2 (i.e. dc is negative). 

To perform a worst-case stabil ity analysis the 
minimum value of %(@.a& must be found by searching 
over the set Us(jo,& and by replacing I A ( j w ) l  by i t s  
bound Ao(w>. 

em 1: Sufficient Condition for Robust Stabil ity 

If g(w,& > 0 for a l l  w, then the true closed-loop 

system is stable. 

Proof: From Figure 2 and the above assumption, 
the number of encirclements of the c r i t i ca l  
point camot be altered by the uncertainty 
if the inequality in Theorem 1 i s  satisfied. 

Note the fundamental difference between structured 
and unstructured uncertainty. In the case of structured 
uncertainty, directional (phase) information IS 
exploited. That is, only structured perturbat ions which 
decrease the distance t o  the cr i t ica l  point are of 
concern, and perturbations away from the cr i t ica l  point 
increase stability-robustness and can be ignored. No 
phase information is available for the unstructured 
uncertainty. Therefore it must be assumed that the 
unstructured perturbations are always in the direction 
of the cr i t ica l  point. 

From the definit ion of the sensitivity function, 
s(s)=[l +t(s)l-', performance can be interpreted from the 
Nyquist diagram in terms of the distance to  the cr i t ica l  
point. That is, 
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The worst-case sensitivity function magnitude is found . -  25 2!? immediate cmequenre c!f EquatiMI (! !I. 

Define a scalar measure of performance 6 as the Hw 
norm of the worst-case sensitivity over the operating 
band. 

(13) 

The objective of the robust design method is t o  
minimize E (i.e. maximize performance), subject to the 
closed-loop stabi l i ty  condition in Theorem 1 .  Since 

I s(jw) I 5 I g(jo) I for a l l  g(s) E G(s) and for a l l  w. the 
requirement of robust performance is satisfied. 

4. Robust Design Method 

A method is proposed t o  design a compensator which 
guarantees closed-loop stabi l i ty  and performance in the 
presence of uncertainty (i.e. robust stabil ity and robust 
performance). The controller minimizes the Hw norm of 
the worst-case sensitivity function over the operating 
band. 

The concept of Nuauist -ShaDing i s  introduced as an 
integral part of the robust design process. While 
imp-shaping techniques are concerned w i th  tailoring 
tho magnitude of the l ~ p  tracsfer function. 
Nyquist-shaping requires magnitude and phase 
information to construct a target Nyquist diagram. The 
target satisfies a l l  stabil ity and performance 
conditions and represents the desired tWmiMl loop 
transfer function, For the given piant, the robust 
design method produces a compensator which yields a 
nominal loop transfer function t ( jw& whose Nyquist 
diagram approaches the target t o  any required degree of 
accuracy. 

It is assumed that the low-frequency, nominal plant 
model g<s&, the parameter set 0 (and hence Us), and 

the magnitude bound on the Unstructured Uncertainty 
Ao(w) are known t o  the control system designer. Then, 
the f i r s t  Step in the robust design method Consists Of 
finding the target Nyquist diagram via the 
Nyquist-shaping procedure. The target curve cannot 
have an arbitrary shape in the complex plane. Stability 
and analytic function theory require the target Nyquist 
diagram to  satisfy the following constraints. 

I 
j 

( 1 )  Nyquist stabi!ity cr i ter ion 
(2) Bode's Integral Theorem [I31 
(3) Theorem 1 
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Subject t o  the above constraints, the target must 
minimize the Hw nmm of the worst-case sensitivity 
function over the operating band. The task of 
incorporating these constraints into a standard 
optimization problem is a subject of current research. 
While not a l l  of the details of the Nyquist-shaping 
algorithm have been rigorously formalized. the basic 
idea i s  t o  s tar t  w i th  a Nyquist diagram which 
corresponds to a loop transfer function which i s  known 
t o  be closed-loop stable w i t h  respect t o  the structured 
and unstructured Uncertainty in the given plant model 
(i.e. satisfies Theorem I ) .  This in i t ia l  curve in the 
complex plane is continuously deformed in such a way 
that the above constraints are met and the Hm norm of 
the worst-case sensitivity function over 0 6 Qo i s  

monotonically decreasing. The procedure terminates 
when acceptable performance has been achieved, or 
when it is no longer possible t o  improve worst-case 
performance without violating the stabi Ii ty-robustness 
condition in Theorem 1 .  

Finding the in i t ia l  curve for the Nyquist-shaping 
algorithm i s  relatively straight-forward. Since current 

methodologies can handle uns t ruc tu r i -  u n c e r t a i n t r  the 
idea is t o  transform the original problem (wi th  
structured ana unstructurea uncertainty) into one w itn 
just unstructured uncertainty. This must be done in a 
conservative manner so that the resulting compensator 
guarantees a stable closed-loop system. 

A new multiplicative uncertainty may be defined by 
lumping the structured and unstructured uncertainty 
together. 

The plant model g(s) is represented as follows. 

By ignoring the directional properties of the structured 
uncertainty a frequency-dependent magnitude bound on 
A'(s,a& is  computed at each frequency. 

With the numinai piant mode! g(s& and the bomd on 
the unstructured uncertainty A'&w.&. LQG/LTR 11 41 or 
another suitable control design methodology is Used t o  
find a compensator ko(s) which guarantees a stable 
closed-loop system. The Nyquist diagram of the ioop 
transfer function to( jw)=g(]w&k0(jw) is the start.?; 
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point for the Nyquist-shaping procedure. Note that th is 
is an w e r i y  ca-iservaiiiie CGiiiioi sysierii u'esigii becaiise 
the directional nature of the structured uncertainty has 
not been used. The Nyauist-shaping procedure results 
in a target Nyquist diagram which should remove this 
conservatism and improve performance. 

The target curve w i l l  typically correspond t o  a 
hi gh-order sys tem. A f inite-dimensional, 
parameterized loop transfer function must be obtained 
from the target Nyquist diagram. This can be 
accomplished by a least-squares f i t  t o  the magnitude 
and phase data at  specific frequeny points. The 
stabi l i ty  of the finite-dimensional target should be 
checked by Theorem 1 .  If the robustness condition i s  
not satisfied. a frequency-weighted least-squares 
procedure i s  used to  improve the transfer function f i t  
in the frequency range where Theorem 1 was violated. 
Alternatively, a higher order transfer function can be 
used to  f i t  t o  the target Nyquist diagram. 

The finite-dimensional target loop i s  used in the 
Formal Loop Shaping LQGILTR methodology to arrive at 
a compensator k(s). In [151. Stein and Athans outline 
the framework for using LQG/LTR t o  recover arbitrary 
(stable. minimum phase) target loop transfer functions. 
That is. the LQG/LTR methodology can be used to  find a 
compensator k(s) such that the magnitude of the loop 
.transfer function g(s,&k(s) matches the magnitude of 
the target loop. Unfortunately, th is application of 
LQGILTR w i th  Formal Loop Shaping requires the plant 
model g(s& to  be stable and minimum phase. Research 
is being c m u c t e d  to  remwe this restriction. 

.~ -~ ~- . .  
5. implications For AdaDtive C W  

A very active search for a robust adaptive control 
methodology is being conducted and a trend in the 
l iterature is developlng. Many researchers now believe 
that a robust adaptive control system must consist of a 
robust system identif ication algorithm coupled wi th  a 
robust control design method [ 16-201. This philosophy 
has been referred t o  as adaptive robust control, in 
contrast t o  robust adaptive control. Compensator 
redesign takes place infrequently compared to the 
system sample period and only when more accurate 
information about the system can be provided by the 
identif ication algorithm. While the robust design 
method presented here w i l l  be useful in i ts  own r ight  
for  fixeci-parameter cmpeiisator design, the gca! is t o  
deveiop an on-line algorithm as pai t  of a practical !i.e. 
robust) adaptive control system. In addition, the design 
method w i l l  provide the in i t ia l  guess for the adaptive 
compensator. 

Over tne years a great deai of attention has Seen 
paid t o  the development of specific adaptive 
algorithms; however, very l i t t l e  consideration has been 
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given tO'an issue at the heart of the adaptive control 

cmt ro l?  In theory an adaptive control system provides 
better performance w i th  respect t o  a fixed-parameter 
compensator because more information about the 
physical plant i s  incorporated into the design process 
(on-line). 

However, robust adaptive control systems rely upon 
some combination of external persistently exciting 
signals (to ensure good identification), slow sampling 
(to provide stabil ity robustness w i th  respect to 
unmodeled high-frequency dynamics, [2 1 I). and extensive 
real-time computation (to provide safety nets which 
turn o f f  the adaptation when it exhibits instabil ity. 
[221). These robustifying measures degrade 
command-following and disturbance-re jection 
performance and tend t o  neutralize the anticipated 
benefits of an adaptive compensator. In light 'of these 
circumstances it is imperative that the decision t o  use 
adaptive control, for a real engineering application, is  
based upon a quantitative assessment of the costs and 
the benefits of an adaptive system. The robust design 
method proposed here produces the nonadaptive 
feedback system which minimizes the Ha m m  of the 
worst-case sensitivity fundion over the operating 
band. This system may serve as a performance 
benchmark t o  which an adaptive control system i s  
compared. 

~ r r r k l r r . .  . a B h - +  --A 4 k -  hrrrfnrm?-n hnnnfitc nf %,i?nt ivo yl UUICIII' 

6. Conclusions 

A frequency-domain analysis of the stabi l i ty  and 
performance of a SlSO feedback system w i th  structured 
and unstructured uncertainty has been performed. The 
crucial analysis parameter is the distance to  the 
cr i t ica l  point in the Nyquist diagram. Directional 
information (in the complex plane) associated w i t h  the 
structured uncertainty i s  exploited t o  reduce 
conservatism. A new method is outlined to  design 
linear. time-invariant cmpensators for SlSO plant 
models characterized by parameter uncertainty and 
unmodeled dynamics. The resulting feedback system 
minimizes the Ha norm of the worst-case sensitivity 
function Over the operating band and is guaranteed t o  be 
closed-loop stable. The concept of Nyquist-shaping was 
introduced 35 dr! integra! par! of the design process. 

!t is conjectured that the robust design method can 
be used on-line in an adaptive control context. However 
before the decision to  use adaptive control i s  made, the 
control designer must have a quantitative measure of 
L I I ~  perfornance improvement Over !he 'best' 
nonadaptive system. The robust design method provides 
a bemmark  for the performance comparison. 
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Figure 2. Representat ion o f  t(jo) 
in t h e  complex plzne. 
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